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We investigate the liquid-glass phase transition in a system of pointlike particles interacting via a finite-range
attractive potential in D-dimensional space. The phase transition is driven by an “entropy crisis” where the
available phase space volume collapses dramatically at the transition. We describe the general strategy under-
lying the first-principles replica calculation for this type of transition; its application to our model system then
allows for an analytic description of the liquid-glass phase transition within a mean-field approximation,
provided the parameters are chosen suitably. We find a transition exhibiting all the features associated with an
entropy crisis, including the characteristic finite jump of the order parameter at the transition while the free
energy and its first derivative remain continuous.
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I. INTRODUCTION

Notable progress in understanding fundamental aspects of
structural glasses and their freezing transition has been made
�1�; significant advancements originate from the dynamic
formulation of the glass transition using mode coupling
theory �2�, while the statistical mechanics approach draws
extensively from the analogy between the well studied spin
glass �3� and the glassy solid �4�. While the spin glass is
characterized by random frozen orientations of spins due to
the presence of quenched disorder, the structural glass is
characterized by random frozen space positions of the par-
ticles but does not rely on the presence of quenched disorder.
A central idea put forward in this context is the concept of
the “entropy crisis” �5� driving the transition into the glassy
state through a collapse of the system’s phase space. Transi-
tions of this type have shown up in various disordered sys-
tems �6,7� and in the “discontinuous” spin glasses containing
no quenched disorder �8� �see also Ref. �9� for similar sys-
tems with other than spin degrees of freedom�. In this paper,
we apply a heuristic framework �10� based on an entropy
crisis scenario to describe the liquid-glass transition and the
low-temperature thermodynamics of the glassy state in a sys-
tem of interacting particles in D-dimensional space.

Progress in our understanding of the liquid-glass phase
transition and the physics of the low-temperature glass state
is made along two avenues: �i� experimental and numerical
studies provide new details on specific materials and on
model systems, while �ii� conceptual studies push our gen-
eral understanding—unfortunately, the latter provide little
predictive power when it comes to the description of realistic
systems. In choosing a suitable model system, we then have
to compromise between a realistic description of the glass
former and one allowing us to make analytical progress, e.g.,
within a mean-field approach. The first model describing a
liquid-glass phase transition and allowing for a mean-field
type analysis was proposed by Kirkpatrick and Thirumalai
�11�. Formulated within a density functional theory, it pro-
vided a consistent static and dynamic description of the
structural glass transition. New insights into the nature of the

glass transition based on studies of coupled replicated glassy
systems �12,13� led to the formulation of a first-principles
computational scheme providing a description of the equilib-
rium thermodynamics of glasses �10�. This scheme has been
successfully applied, combining analytical and numerical
techniques, to the soft-sphere model in three dimensions �10�
and to the Lennard-Jones binary mixture �14�. Recently, a
model with pointlike particles interacting via a spatially os-
cillating infinite-range potential has been analyzed within
this framework �15�. Despite its unrealistic structure, this
model turned out to provide a good testbed for the replica
based approach: the physics of the liquid-glass phase transi-
tion revealed in this model turned out fully consistent with
the heuristic ideas of the entropy crisis scenario. In the
present paper, we consider a much more realistic model of a
structural glass: adopting again the scheme suggested in Ref.
�10�, we study the low-density limit of a system of particles
in D-dimensional space interacting via a finite-range attrac-
tive potential of depth U0, confined to a shell of radius R and
thickness 2r0 �see Fig. 1�. It turns out that an appropriate
choice of the interaction parameters �r0�R� allows us to
adopt a mean-field approximation and proceed with an ana-
lytic calculation of the free energy and a properly defined
order parameter to the very end. We then arrive at a complete
analytic description of the liquid-glass phase transition oc-
curring in this model glass former and demonstrate that it is

FIG. 1. Interaction potential between particles used in our model
glass former. The attractive interaction �normalized to unity� is lim-
ited to a shell of width 2r0 at a radius R�r0�1, where we have set
the particle radius to unity. The repulsive core prevents the collapse
of the system into two clusters.
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again consistent with the entropy crisis scenario.
In spite of this success, we have to admit ignoring various

important issues related to the structural glass transition:
First, we explicitly avoid the discussion of the relevance of
our equilibrium statistical mechanical approach for the ap-
parently nonequilibrium type liquid-glass phase transition.
This question is both general and deep and we are unable to
present an answer at the present stage. Rather, we hope that,
as in the case of spin glasses �another example of matter
residing in a nonequilibrium state�, at least some of the
physical phenomena and observables are well defined and
make proper physical sense even when computed in terms of
an equilibrium approach. Second, we also prefer not to start
a lengthy �and useless� discussion of the question of what to
do with the crystal state. Such a crystalline state is certainly
present in our model and, since its energy is evidently lower
than the typical energy of glassy configurations, it is the true
ground state of the system. In fact, this is the typical situation
for most models of glasses and the usual algorithm of treat-
ing the presence of the crystal state �which we also follow in
this paper� is simple: it has to be ignored. On a qualitative
level, the reason for such a pragmatic approach is very
simple: it is well known that frozen glassy states do exist at
low temperatures regardless of the presence of the crystal
ground state. Moreover, in many circumstances such states
turn out to be quite stable during reasonable observation
times; we then can safely assume that the crystal state is
located far away from the relevant glassy states in configu-
rational space and furthermore that the crystal and glassy
states are separated by large energy barriers. This is a quite
standard situation in statistical mechanics: except for some
rare cases admitting an exact solution, one usually studies
only a limited ad hoc chosen part of the phase space depend-
ing on the object under study. In the case of the structural
glass, one then expects one of two scenarios: either the basic
assumption �that the existence of the crystal can be ignored�
turns out to be reasonable and the crystal configurations
never show up in the calculations, or this assumption is
wrong and then one inevitably faces some kind of instability
and divergence. As for the model and method considered in
the present paper, the calculations demonstrate that the crys-
tal state indeed does not interfere with the glassy configura-
tions.

The paper is structured as follows. In Sec. II below, we
first describe the heuristic framework underlying our replica
analysis along the lines discussed in Ref. �10� and introduce
our specific model. Its free energy is calculated within the
replica mean-field approach in Sec. III. The results and con-
clusions are given in Sec. IV: We find that the system freezes
at the glass temperature Tc=U0 / ln�DR /r0� into an amor-
phous solid with a number of nearest neighbors slightly
larger than D. We determine the order parameter and its jump
at Tc and present analytical expressions for the free energy
and entropy of the solid and liquid phases as well as for the
configurational entropy or complexity.

II. STRUCTURAL GLASS TRANSITION

A. Symmetry breaking in random systems

Consider a system of N particles in D-dimensional space
described by the Hamiltonian

H�xi� =
1

2 �
i,j=1

N

U��xi − x j�� , �1�

where xi denotes the position of the ith particle and U��x�� is
the interparticle potential. We assume that at low tempera-
tures the system is frozen in a disordered �glassy� state which
is characterized by random spatial positions of the particles;
this can be achieved through a rapid quench avoiding the
crystallization by entropic reasons. The glass state is charac-
terized by broken translational and rotational symmetries,
but unlike the ordered crystal configurations �characterized
by their specific spatial and rotational symmetries�, it is im-
possible to identify the residual symmetries left in the glassy
state. This naturally resembles the spin-glass problem, where
the spins are frozen in a random state which cannot be char-
acterized by any apparent global symmetry breaking. How-
ever, unlike spin glasses, here we do not have quenched dis-
order installed in the initial Hamiltonian. Nevertheless, the
ideas borrowed from the spin-glass theory and in particular
the use of the replica technique turn out to be quite fruitful
also for the description of structural glasses �10�.

In order to demonstrate the effect of spontaneous symme-
try breaking, e.g., in ordered magnetic systems, one intro-
duces a conjugate field coupled to the order parameter which
is set to zero at the end �after taking the thermodynamic
limit�. In spin glasses, the same strategy can be applied by
introducing several weakly coupled copies �replicas� of the
original system. Similarly, in order to demonstrate the freez-
ing of a system of interacting particles �described by Eq. �1��
into a random glass state, we introduce two identical copies
�with particles at positions xi and yi, respectively� of the
same system described by the Hamiltonian

H2 =
1

2�
i,j

N

U��xi − x j�� +
1

2�
i,j

N

U��yi − y j�� + ��
i

N

W�xi − yi� .

�2�

The last term in Eq. �2� describes a weak attractive potential
W between the particles at xi and yi of the two systems and
plays the role of the symmetry breaking conjugate field in
the ordered system. As usual, the control parameter � is set to
zero after taking the thermodynamic limit and the system can
end up in one of two phases: �i� the particles of the two
systems are independent �uncorrelated�, indicating that they
do not memorize their spatial positions and hence the origi-
nal system is in the high-temperature liquid phase, or �ii� the
positions of the particles remain correlated, indicating that
they are localized in space and we conclude that the original
system is in the low-temperature solid state. As in spin
glasses, in order to obtain more detailed information about
the phase transition, it is convenient to introduce m replicas
of the original system. Also, in the actual calculation there is
no need to introduce a supplementary attractive potential be-
tween the replicas: following standard practice, it is suffi-
cient to allow for the possibility of symmetry breaking in
order to prove its existence afterward.
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B. Entropy crisis scenario

The entropy crisis scenario �5� for the glass transition
builds on the idea of a phase space collapse upon entering
the frozen phase; in its pure form it shows up in the random
energy model of spin glasses which has been solved exactly
�6�. We first briefly summarize the main features of this heu-
ristic framework as applied to the problem of structural
glasses, following the original work of Mézard and Parisi
�10�.

We assume that the partition function Z can be repre-
sented in the form

Z = �
�

exp�− Nf�/T� , �3�

where Nf� denote the energies of the thermodynamically rel-
evant local mimima in configurational space. The number
��f� of local minima with energy f is assumed to be expo-
nentially large, ��f�=exp�NS�f ,T��, where S�f ,T� denotes
the configurational entropy density or complexity. Finally,
the function S�f ,T� at fixed T will have the qualitative shape
shown in Fig. 2, with S�f ,T�=0 at f � fmin�T�, and a concave
increase for f � fmin�T�.

The partition function is written in the form

Z � �
f�fmin

df exp	− N�f − TS�f ,T��/T
 �4�

which can be evaluated within a saddle-point approximation
in the thermodynamic limit �N→	�. The free energy density
F�T�=−�T /N�ln Z is given by

F�T� = f*�T� − TS�f*�T�,T�, T � Tc, �5�

with f*�T� defined via � fS� f*�T�=1/T
�c and �c the maximal
slope of the function S�f ,T� �cf. Fig. 2�. At low temperatures
T
Tc the integral is determined by the lowest-energy state
alone, F�T�= fmin�T�.

A microscopic formalism capturing the above phenom-
enology can be set up with the help of replicas �10�. Con-
sider m identical �noncoupled� replicas of the same system
where the particle positions remain correlated among the dif-
ferent replicas; this ansatz describes a molecular liquid where

each molecule consists of m particles originating from dif-
ferent replicas. The partition function of the replicated sys-
tem takes the form

Zm � �
f�fmin

df exp	− Nm�f − �T/m�S�f ,T��/T
 . �6�

Note that the phase space volume ��f� remains that of the
nonreplicated liquid since the molecular structure essentially
preserves the configurational degrees of freedom; hence the
“entropic temperature” is reduced by a factor m. The free
energy density F�m ,T�=−�T /mN�ln Zm of the molecular liq-
uid reads

F�m,T� = � f*�m,T� −
T

m
S�f*�m,T�,T� , T � mTc,

fmin�T� , T 
 mTc,
� �7�

where f*�m ,T� is defined via the saddle-point equation

� fS�f ,T�� f*�m,T� = m/T 
 �c. �8�

In order to study the thermodynamic properties of our origi-
nal system �with m=1� in the low-temperature glassy phase
at T
Tc, we continue analytically the expression for the free
energy density F�m ,T� from integer values m to arbitrary
continuous values and analyze its behavior for m
1. Start-
ing from small m with 0
m
T /Tc
m*�T�, the m-replica
system resides in the molecular liquid phase with a free en-
ergy density given by Eq. �7�. As m approaches m*�T� from
below, the free energy density becomes pinned to the lowest
value fmin�T� and the system freezes into the glassy phase. A
further increase of m beyond m*�T� results in a constant free
energy density fmin�T� and this remains the case as m→1. As
a result, the free energy density �and hence the entire ther-
modynamics� of the original glass phase can be computed
from the m-fold replicated system residing in the molecular
liquid phase and taking the limit Fm=1�T�
F�m*�T� ,T�. The
critical temperature Tc is reached when m*�Tc�=1. At tem-
peratures above Tc the system resides in a liquid phase: rep-
licas are independent, hence m=1, and the free energy is
given by Fm=1�T�=F�1,T�.

The crucial step then is the determination of m*�T�. As-
sume we have managed to compute the free energy density
F�m ,T� of the m-replica system for the molecular liquid
phase �note the crucial role of ergodicity in the liquid allow-
ing for an unrestricted averaging over phase space; we can-
not hope to do such a calculation for the amorphous solid
with its restricted phase space�. Provided our system indeed
follows the heuristics of an entropy crisis, we can cast this
free energy density into the form �7� with f*�m ,T� the solu-
tion of the saddle-point equation �8�. The critical replica pa-
rameter m*�T� then is determined by the condition
f*(m*�T� ,T)= fmin�T� or, equivalently, S�f*(m*�T�) ,T�=0.
Fortunately, we do not need to know a priori the form of the
configurational entropy density S�f ,T�: calculating the de-
rivatives of the free energy density F�m ,T� with respect to m
at m=m*�T�, we easily find that

FIG. 2. Qualitative shape of the configurational entropy density
�at fixed parameter T� assumed in the phenomenological description
of a glass transition driven by an entropy crisis. The slope � corre-
sponds to the inverse temperature. It assumes its maximal value
�c=1/Tc at the glass transition temperature Tc; the corresponding
cut at T=Tc determines the minimal free energy fmin�Tc�.
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�mF�m,T��m=m*
= 	�T/m2�S�f*�m,T�,T�

+ ��mf*�� f*
�f* − TS�f*,T�/m�
m=m*

= 0

and

�m
2 F�m,T��m=m*

= ���mf*�/m�m=m*

 0,

where we have made use of the specific shape of the function
S�f ,T� �cf. Fig. 2�. We thus conclude that the function
F�m ,T� exhibits a maximum at m=m* �see Fig. 3�, and we
can determine the critical replica parameter m*�T� directly
from the free energy density F�m ,T� in the molecular liquid
phase without explicit knowledge of the entropy density
S�f ,T�.

In summary, we can adopt the following strategy in order
to obtain a proper thermodynamic description of the glass
transition associated with an entropy crisis: First, we have to
compute the free energy density F�m ,T� of the m-fold repli-
cated system in the molecular liquid phase and for arbitrary
values of the parameter m. Next, this function has to be
analytically continued to arbitrary �noninteger� values of m,
in particular, values within the interval 0
m
1. In a last
step, we have to find the maximum of the function F�m ,T�
within the interval �0, 1�. If the maximum of the replica free
energy F�m ,T� is realized at m*�T�
1 �i.e., T
Tc; cf. Fig.
3�, we conclude that the original system �with m=1� is in the
glass phase and its free energy density is given by Fglass
=F�m*�T� ,T�. On the other hand, a maximum in F�m ,T�
located at a value m*�T��1 �i.e., Tc
T� tells us that the
original system resides in the liquid phase. The true free
energy density of the original system with m=1 then is given
by the value Fliquid=F�m=1,T� assumed at the border of the
interval. Finally, the transition from one regime to the other
at m*�Tc�=1 determines the transition temperature Tc.

C. Implementation of replica calculation

We consider a system of N identical particles, confined
within a macroscopic box of volume V and described by the

Hamiltonian H�x1 ,x2 ,… ,xN�
H�x�. The partition function
for m uncoupled copies of this system reads

Zm =
1

�N ! �m�
i=1

N

�
a=1

m � dDxi
a

sD exp�− ��
a=1

m

H�xa�� , �9�

where �=1/T denotes the inverse temperature and s is the
particle size �or the lattice spacing� which we set to unity
hereafter, s=1. Also, we define the density �=N /V, which
we keep constant in the thermodynamic limit, as well as the
mean interparticle distance L=�−1/D. The free energy density
is given by the expression F�m ,��=−�ln Zm� /m�N. Follow-
ing the above strategy, we assume that the spatial positions
of the particles in different replicas are correlated, i.e., the
particles arrange in “replica molecules”; technically this is
implemented via a transformation to center of mass �xi� and
relative coordinates �ui

a� , xi
a=xi+ui

a, and assuming that the
displacements ui

a remain bounded, �ui
a��L. In addition, the

coordinates have to satisfy the constraint

�
a=1

m

ui
a = 0 . �10�

Finally, the assumption that this replica system resides in the
molecular liquid state implies that the molecular positions xi
take on arbitrary values within the entire system volume.
Hence, the replicated partition function can be written in the
form

Zm =
mDN

N! �
i=1

N

�
a=1

m � dDui
a
��

b=1

m

ui
b�

��
i=1

N � dDxiexp�− ��
a=1

m

H�x + ua�� . �11�

Here, the additional factor mDN is due to the change of vari-
ables xi

a=xi+ui
a with the constraint �10�.

Our problem now has assumed a form that is similar to
the replica representation of usual glass problems with
quenched disorder. The molecular coordinates xi play the
role of the disorder parameters, while the displacements ui

a

represent the dynamical variables. Our task then is to average
over the disorder parameters 	xi
 in order to arrive at the
partition function Zm expressed through a new effective rep-
lica Hamiltonian Hm�ua�,

Zm = �
i=1

N

�
a=1

m � dDui
a
��

b=1

m

ui
b�exp�− �Hm�ua�� , �12�

where the replica variables ui
a usually become coupled. The

final integration over the dynamical variables ui
a then will

provide us with the free energy density F�m ,��. Note that in
order to assure the consistency of the calculation, we have to
compute the mean squared displacement amplitude �u2�1/2

and verify that it is indeed smaller than the average distance
between the particles, �u2�1/2�L. The above program then is
carried out for the specific interaction introduced in the next
section.

FIG. 3. �a� Sketch of the free energy density F�m ,T� for an
m-fold replicated system as a function of the replica parameter m
for different values of the temperature T. For m�m*�T� the true
free energy of the glass phase assumes the value F�m*�T� ,T�
= fmin�T�. The smooth decrease of the maximum in F�m� with in-
creasing temperature T reflects the �weak� temperature dependence
of fmin�T�. �b� Free energy density as a function of T after eliminat-
ing the replica parameter m.
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D. Model interaction

We define the interparticle interaction in the Hamiltonian
�1� in terms of the spherically symmetric potential U��x�� �cf.
Fig. 1; we define R±=R±r0�

U��x�� = �� ��x� − R�2

r0
2 − 1� , R− 
 �x� 
 R+,

0, �x� � �R−,R+� .
� �13�

We require the thickness 2r0 of the spherical attractive shell
to be small compared to the radius R , r0�R. At the same
time, we choose a shell thickness r0 large compared to the
particle size, which we choose equal to unity for simplicity,
r0�1; this allows us to perform all the calculations within
the continuum limit. More specifically, we will treat the par-
ticles as pointlike objects when integrating over positions.
On the other hand, a proper hard core repulsion is required in
order to inhibit the trivial collapse of the system into a pair
of clusters separated by R with N /2 particles each.

For later convenience we introduce the volume integral

� dDx U��x�� = �
R−��x��R+

dDx� ��x� − R�2

r0
2 − 1�

� − V0 � RD−1r0 �14�

with V0=2r0SD the volume of a spherical shell with radius R
and width 2r0 �here, SD=2�D/2R�D−1� /��D /2��R�D−1� is the
area of the D-dimensional sphere with radius R�. Finally, we
will assume a particle density near to that of the liquid or
crystal phase by fixing the mean particle separation L
=�−1/D close to the interaction radius R , L�R.

Simple geometric considerations tell us that in addition to
the low-energy crystal configuration �characterized by space
periodicity and a fixed number of nearest neighbors�, the
present model also develops numerous metastable low-
energy states with a disordered or glassy arrangement of par-
ticles. Such states are inhomogeneous in space and exhibit a
notably smaller average number of nearest neighbors as com-
pared to the crystal. Also, geometric considerations tell that
such glassy configurations are “well separated” from the or-
dered crystal: their transformation into the crystal state
would require a global �on the scale of the entire system�
rearrangement of the particles which would involve large
energies. It is this type of random glasslike configuration
which is at the focus of our further studies below.

III. REPLICA FREE ENERGY

We start from the expression �11� for the replica partition
function in the form

Zm =
mDNVN

N! �
i=1

N

�
a=1

m � dDui
a
��

b=1

m

ui
b�

��
i=1

N � dDxi

V
exp�−

�

2 �
a=1

m

�
i,j=1

N

U���xi − x j� + uij
a ��� ,

�15�

where uij
a 
�ui

a−u j
a�. For large N, we can approximate N !

�NN and obtain the prefactor mDNVN /N ! �exp�DN ln�m�
−N ln���� with the density �=N /V. The replica partition
function then takes the form

Zm = e�DN ln�m�−N ln�����
i=1

N

�
a=1

m � dDui
a
��

b=1

m

ui
b�

��exp�− �H�x;u���x �16�

with the average over positions

���x1,…,xN��x 
 �
i=1

N � dDxi

V
��x1,…,xN� . �17�

The average of the exponential in Eq. �16� can be calculated
with the help of a cumulant expansion,

�exp�− �H�x;u���x � exp�− ��H�x +
�2

2!
��H2��x −

�3

3!
��H3��x

+ ¯� , �18�

where ��Hk��x denotes the kth cumulant of the Hamiltonian;
in particular,

��H2��x 
 �H2�x − �H�x
2, �19�

��H3��x 
 �H3�x − 3�H2�x�H�x + 2�H�x
2. �20�

A. First- and second-order contributions

Using the potential �13� with its volume integral �14�, we
find the first-order term

�H�x =
1

2�
a=1

m

�
i,j=1

N

�U���xi − x j� + uij
a ���x

=
N2

2
m� dDx

V
U��x��

� −
N�V0

2
m . �21�

For the second-order cumulant �see Fig. 4�a� for a diagram-
matic representation�, we find

FIG. 4. Diagrammatic representation of the second-order cumu-
lant; �a� only connected graphs give a finite contribution; �b� con-
tributions after expansion in the displacement uij

a .
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��H2��x =
1

4 �
a,b=1

m

�
i,j,k,l

N

��U���xi − x j� + uij
a ��

�U���xk − xl� + ukl
b ����xi,xj,xl,xk

. �22�

Only correlated positions �i , j�= �k , l� �i.e., connected graphs�
give a finite contribution �since �U��
xij +uij

b ��U��
xkl+ukl
b ���

= �U��x����U��x����; hence

��H2��x =
1

2 �
a,b=1

m

�
i,j

N � dDx

V
U��x + uij

a ��U��x + uij
b �� .

�23�

We assume that typical deviations ��u�2�1/2 are small com-
pared to r0 �this assumption has to be verified at the end of
the calculation�, allowing us to expand the potential U��x
+uij

a �� in the displacement uij
a ,

�
a=1

m

U��x + uij
a �� � mU��x�� + �

�=1

D

U����x���
a=1

m

uij���
a

+
1

2 �
��=1

D

U��� ��x���
a=1

m

uij���
a uij���

a . �24�

Here, the indices � , � denote spatial vector components and
U�� ,U��� are corresponding derivatives. The expansion �24�
involves the small parameter u2 /r0

2, allowing its termination
at the second order �see Fig. 4�b� for a diagrammatic repre-
sentation�. Its second term �linear in u� vanishes due to the
constraint �10� and we arrive at the expression

��H2��x �
N2

2
m2�U2��x���x

+
1

2
m �

��=1

D

�U��x��U��� ��x���x�
a=1

m

�
i,j

N

uij���
a uij���

a .

�25�

Using the definition of the potential U��x��, Eq. �13�, we
obtain

U��� �R− 
 �x� 
 R+� =
2

r0
2�
���1 −

R

�x�� + n�n�

R

�x�� ,

�26�

and 0 else, where n�=x� / �x� is the unit vector in the direction
of x. Accounting for the smallness of r0 , r0�R, we find the
positional averages

�U��x��2�x 
� dDx

V
�U��x���2 �

V0

V
, �27�

�U��x��U��� ��x���x 
� dDx

V
U��x��U��� ��x��

� −
V0

V

2

r0
2 �n�n�� = −

V0

V

2

r0
2D


��, �28�

and substituting these results back into Eq. �25� we obtain

��H2��x �
N�V0

2
m2 −

N�V0

Dr0
2 m�

i,j

N

�
�=1

D

�
a=1

m

�uij���
a �2. �29�

Going back to the original displacement coordinates ui
a and

accounting for the restrictions �the second condition corre-
sponds to a global shift of all particles in the system�
�a=1

m ui
a=0 and �i

Nui
a=0, we obtain the following contribution

from the first- and second-order cumulants:

− ��H�x +
�2

2!
��H2��x �

N�V0

2
���m� +

1

2!
��m�2�

−
�V0�

Dr0
2 ��m��

�=1

D

�
a=1

m

�
i

N

�ui���
a �2.

�30�

B. Third-order cumulant

Next, we determine the contributions from the third-order
cumulant ��H3��x
�� /2+2�� which contributes with two
terms describing two-point ��� and three-point ��� correla-
tions. These correspond to the connected diagrams shown in
Fig. 5�a� and can be written in the form

� = �
a,b,c=1

m

�
i,j

N

�U��x + uij
a ��U��x + uij

b ��U��x + uij
c ���x �31�

and

� = �
a,b,c=1

m

�
i,j,k

N

�U���xi − x j� + uij
a ��U���x j − xk� + u jk

b ��

�U���xk − xi� + uki
c ���xixjxk

. �32�

Expanding the two-point contribution Eq. �31� in the dis-
placement u and integrating over x, we obtain up to second
order in the displacement u �cf. Fig. 5�b��

FIG. 5. Diagrams contributing to third order in the interaction
potential: �a� two-point and three-point �loop� diagrams, �b� contri-
bution of the two-point diagram after expansion in the displacement
u, and �c� contribution of the three-point diagram after expansion in
the displacement u.

V. S. DOTSENKO AND G. BLATTER PHYSICAL REVIEW E 72, 021502 �2005�

021502-6



� = − N�V0m3 +
6�V0

Dr0
2 m2�

�=1

D

�
a=1

m

�
i

N

�ui���
a �2. �33�

Next, we concentrate on the three-point �loop� contribution
and first simplify the expression by redefining the coordi-
nates xi , x j , xk,

� = �
a,b,c=1

m

�
i,j,k

N

�U��x1 + uij
a ��U��x2 + u jk

b ��

�U��x1 − x2 + uik
c ���x1x2

. �34�

We expand in the displacement u �cf. Fig. 5�c��, and arrive at
the expression

� = N3m3�U��x1��U��x2��U��x1 − x2���x1x2

+
3N

2
m2 �

��=1

D

�U��x1��U��x2��U��� ��x1 − x2���x1x2

� �
a=1

m

�
ij

N

uij���
a uij���

a . �35�

Using the definition �13� of the potential and its derivatives
�26�, we find for the above disorder averages �again assum-
ing that r0�R�

�U��x1��U��x2��U��x1 − x2���x1,x2
� −

V0V1

V2 ,

�U��x1��U��x2��U��� ��x1 − x2���x1,x2
� 
��

2

r0
2D

V0V1

V2 ,

�36�

with V1�RD−2r0
2 the intersection volume of two spherical

shells with radius R and width r0; the three-point contribu-
tion then takes the form

� = − N�2V0V1m3 +
6�2V0V1

Dr0
2 m2�

�=1

D

�
a=1

m

�
i

N

�ui���
a �2. �37�

Replacing the density � with the distance parameter L and
assuming that R�L, we find that the three-point contribution
is reduced with respect to the two-point term �33� by the
small factor

�V1 � L−DRD−2r0
2 = �R

L
�D� r0

R
�2

� 1. �38�

C. kth-order cumulants

Comparing the magnitude of the above diagrams, we note
that all two-point terms �see Fig. 6� appear with similar
weight and we have to resum them; the two-point part
of the kth-order cumulant contributes with a term
�−��k��Hk��2pt /k! where �k�2; see Eq. �21� for the k=1
contribution�

�− 1�k��Hk��2pt �
N�V0

2
mk −

k�V0

Dr0
2 mk−1�

�=1

D

�
a=1

m

�
i

N

�ui���
a �2.

�39�

On the other hand, the loop diagrams remain small: a
simple geometrical analysis shows that each kth-order loop
involves an additional small factor of order �k�3�

��V0�k−3��V1� � ��R

L
�D� r0

R
��k−3�R

L
�D� r0

R
�2

= �R

L
�D�k−2�� r0

R
�k−1

� 1. �40�

Thus, we conclude that for the present model with properly
chosen parameters r0�R and R�L all loop type contribu-
tions produce only small corrections as compared to the main
terms arising from the two-point diagrams.

It remains to sum up the two-point contributions, which
corresponds to the substitution ��m+ ��m�2 /2!
+ ��m�3 /3! ¯→ �exp��m�−1�, and we obtain the partition
function averaged over disorder in the form

Zm = exp	DN ln�m� − N ln��� + �N�V0/2��e�m − 1�


� �
i=1

N

�
�=1

D ��
a=1

m � dDui���
a 
��

b=1

m

ui���
b �

�exp�−
�V0�

Dr0
2 �e�m − 1��

a=1

m

�ui���
a �2�� . �41�

A simple Gaussian integration over the displacements ui���
a

then results in the expression �representing the 
 function
through an integral adds a linear term to the exponent, which
thus remains quadratic�

Zm = exp�DN

2
ln�m� − N ln��� +

N�V0

2
�e�m − 1�

−
ND�m − 1�

2
ln��V0�

Dr0
2 �e�m − 1��� �42�

and taking the logarithm we obtain �after rearranging terms�
the replica free energy density F�m ,��=−�1/N�m�ln�Zm� in
the form

FIG. 6. Diagrammatic representation of the two-point contribu-
tion to the kth-order cumulant after expansion in the displacement
u.
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F�m,�� = F0��� −
�V0

2�m
�e�m − 1� −

D

2�m�ln��V0L2�m

Dr0
2 �

− �m − 1�ln�e�m − 1�� , �43�

where we have separated the term

F0��� =
D

2�
ln��V0�

Dr0
2 � �44�

which does not depend on the replica number m. When pro-
ceeding with Eq. �43� we have to keep in mind two restric-
tions that are limiting its validity: �i� our continuum approxi-
mation prevents us from reaching very low temperatures, and
�ii� the smallness of the mean square displacements �u2�
�r0

2 requires a sufficiently large parameter �m or a suffi-
ciently small temperature T. We proceed with a detailed
analysis of these restrictions.

D. Restrictions

In order to justify the continuum limit in the integrations
over the displacements ui���

a �see Eq. �41��, where we assume
that �ui���

a ��1, we have to demand that the width

�V0�

Dr0
2 �e�m − 1� � 1. �45�

Hence, the application of the continuuum limit puts a lower
limit on the system temperature, or, alternatively, on the
largeness of the replica parameter m. We will return to this
point in the next section.

The second restriction derives from the condition that
typical values of the displacements ui���

a as defined by the
Boltzmann weight in Eq. �41� should be small on the scale of
the width r0 of the attractive shell; the Gaussian integration
then yields the condition

�u2� 

1

m
�
a=1

m

��ua�2� �
Dr0

2/�V0

�m�exp��m� − 1�
� r0

2.

Since �V0��R /L�D�r0 /R��1 for R�L, we can conclude
that the result for the replica free energy density describing
the molecular liquid state is valid if �m is sufficiently large
and bounded by the condition

�V0�m exp��m� � 1. �46�

The violation of this condition implies that the particles,
originally assumed to be bound in replica molecules, would
escape from the potential well U��x�� and become effectively
decoupled. In this situation the state of our replica system
would not correspond to the molecular liquid phase any more
and the above analysis cannot be applied. The same conclu-
sion also follows from our general qualitative arguments in
Sec. II B: the limit of small replica parameter m corresponds
to a high effective temperature of the replicated system
where no replica molecules could survive.

IV. RESULTS AND CONCLUSIONS

A. Free energy density and Tc

Let us return to the free energy density �43� and determine
the replica parameter m. Assuming that exp��m��1, we first
simplify the function F�m ,��,

F�m,�� � F0��� −
�V0

2�m
e�m −

D

2�m
ln��V0L2�m

Dr0
2 �

+ D�m − 1�/2, �47�

and find its maximum in the replica parameter m from the
condition �mF�m ,��=0,

�V0

D
��m − 1�e�m − ��m2 − 1� = ln��V0L2�m

Dr0
2 � . �48�

With the parameters r0 /L, �V0�1, and �V0L2 /r0
2�1, the

above equation assumes the solution �to logarithmic accu-
racy�

�m*��� � ln
D

�V0
+ ln� ln��V0L2/eDr0

2�
ln�D/�V0�

+
1

�
ln

D

�V0
� .

�49�

In the following, we concentrate on the case of matching
density ��R−D, i.e., L�R, and substituting ��R−D , V0
�RD−1r0 we easily verify that the above conditions are sat-
isfied,

�V0 � �R

L
�Dr0

R
�

r0

R
� 1, �50�

�V0
L2

r0
2 � �R

L
�D−1 L

r0
�

R

r0
� 1. �51�

The solution m* then assumes the simplified form

�m*��� � ln
DR

r0
+ ln�1 +

1

�
ln

DR

r0
� . �52�

The transition temperature Tc is defined by the condition
m*��c�=1 �see Sec. II B� and we arrive at the estimate

Tc �
1

ln�DR/r0�
� 1. �53�

Next, we should verify that the above conditions �45� and
�46� are satisfied; they can be cast into the form

1 �
r0

R
�m e�m � mDr0

2; �54�

with

�m � �m*�T� � ln�DR/r0� . �55�

The first relation �guaranteeing a small displacement ampli-
tude �u2��r0

2� is satisfied within the entire low-temperature
phase 0�T�Tc. The second relation �allowing us to make
use of the continuum limit� implies that T�1/r0

2. This con-
dition is satisfied at Tc since ln�DR /r0��r0

2 for sufficiently
large r0; however, it is violated at low temperatures T
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�1/r0
2, thus limiting the applicability of our results to suffi-

ciently high values of T.
The logarithmic dependence of Tc found above can be

easily understood from an order of magnitude estimate of the
free energies of the liquid and glass phases. Let us assume
that the average number of particles interacting in the frozen
state is of the order of D �see below, Eqs. �73� and �74��.
Then each particle contributes with an energy −D to the free
energy of the system. Second, the freezing into the glass state
confines the particle to the volume r0

D which is small with
respect to the volume RD available in the liquid state. This
produces a deficit ln�RD /r0

D� in the entropy of the frozen state
as compared to the liquid. The difference in the free energies
between the frozen and liquid states then can be estimated as
�F�−D+T ln�RD /r0

D�; this quantity turns negative at tem-
peratures T
Tc��ln�R /r0��−1 and the frozen state becomes
preferable.

An independent confirmation of the result �53� can be
obtained from a virial expansion �16�: to third order the
equation of state takes the form

pV

NT
= 1 + B�T�

N

V
+ C�T�

N2

V2 + ¯ �56�

with the coefficients

B�T� = −
1

2
� d3x f�x� ,

C�T� = −
1

3
� d3x1d3x2f�x1�f�x2�f�x1 − x2� , �57�

and f�x�=exp�−�U�x��−1. Inserting the expression �13� for
the potential U we can rewrite

f�x� � �exp��� , R− 
 �x� 
 R+,

0, �x� � �R−,R+� ,
� �58�

and using the results �14� and �36� above, we find B
�−RD�r0 /R�exp��� and C�T��−R2D�r0 /R�3 exp�3��. As-
suming a high particle density with L�R, we find that the
virial expansion diverges when �r0 /R�exp����1, thus repro-
ducing the critical temperature �53�.

B. Configurational entropy

We can use our free energy expression F�m ,�� to con-
struct the form of the configurational entropy S�f ,T� �cf. Fig.
1�. Taking the derivative of the free energy F�m ,T�
= f�m ,T�− �T /m�S�f�m ,T� ,T� and of mF�m ,T� with respect
to m and using that � fS=m /T �cf. Eqs. �7� and �8��, we obtain
the relations

m2

T
�mF�m,T� = S�m,T� , �59�

�m�mF�m,T�� = f�m,T� , �60�

and eliminating the parameter m, we arrive at an expression
for S�f ,T�. We use the free energy �43� in the limit of large

�m and expand �to third order in m−m*� around the maxi-
mum F(m*�T� ,T). Expressing m−m* through f − fmin �with
fmin=F(m*�T� ,T)� we find that the configurational entropy
near fmin assumes the form

S�f ,T� � �m*�f − fmin� −
2R

r0T
e−�m*�f − fmin�2. �61�

This result exhibits the shape expected for a configurational
entropy triggering an entropy crisis as discussed in Sec. II B
�see Fig. 2�.

C. Order parameter

The above formal replica computations have been per-
formed along the lines outlined in Sec. II and fit well the
original physical ideas regarding the nature of the liquid-
glass phase transition. In order to describe the phase transi-
tion in more quantitative terms one has to introduce a prop-
erly defined order parameter which should be a measurable
quantity, e.g., in computer simulations. Such an order param-
eter is easily defined if we exploit the replication trick where
we have introduced m identical copies of the same system.
Let us assume that all these systems are allowed to thermal-
ize independently but with the same �random� starting posi-
tions of the particles. If, at sufficiently high temperatures, the
thermodynamic state of the system is a liquid, we expect the
spatial positions of the particles belonging to different sys-
tems to be uncorrelated. On the other hand, if the thermody-
namic state of the system is a frozen glass with each particle
localized in a limited part of space, then the positions of the
particles belonging to different replicas remain correlated,
although the systems are uncoupled. Keeping in mind this
qualitative scenario, we introduce the correlator

G =
1

N
�
i=1

N

��xi
�1� − xi

�2��2� , �62�

where xi
�1� is the position of the ith particle in the system

number 1, and xi
�2� is the corresponding position �again of the

ith particle� of the system number 2. If the thermodynamic
state of the system is a liquid, then the value of G is propor-
tional to N−1�i=1

N ��xi
�1��2�, which is of the order of the linear

size squared of the system and becomes infinite in the ther-
modynamic limit.

On the other hand, if the system is in the glass state, the
situation is very different. In this case both xi

�1� and xi
�2� are

localized near the same equilibrium positions and G remains
finite. Since all m systems �replicas� considered here are
equivalent, it is convenient to write the correlator �62� in the
symmetric way,

G =
1

N
�
i=1

N
1

m�m − 1� �
a,b=1

m

��xi
�a� − xi

�b��2� .

We compute G in the glass phase following the procedure
described in Sec. II and implemented in Sec. III. Changing
variables according to xi

a=xi+ui
a, we find
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G =
1

m�m − 1� �
a,b=1

m

��ua − ub�2� =
2Dm

�m − 1�
��u�

a�2� , �63�

with the distribution of displacements u�
a given by Eq. �41�.

A simple Gaussian integration yields

G � T
Dr0

2

�V0
e−�m*�T�, �64�

where �V0�r0 /R �see Eq. �50�� and the value of m*�T� is
given by the saddle-point solution �m*�T�� ln�DR /r0�.
Thus, in the glassy phase we find the finite value

G � Tr0
2. �65�

We then define the order parameter Q= �1+G�−1 assuming a
finite value in the glassy phase and vanishing in the liquid,

Q = �0 in the liquid, at T � Tc,

1

1 + Tr0
2 in the glass, at T 
 Tc, � �66�

where the transition temperature Tc is given by Eq. �53�.
Note that the value of Q remains finite at T=Tc, as expected
for a phase transition driven by an entropy crisis. On the one
hand, the physical order parameter describing this phase
transition exhibits a finite jump at Tc �as expected for a first-
order phase transition�, while, on the other hand, the free
energy of the system is continuous in the transition point
�with a continuous derivative as in a second-order transition�.
On a qualitative level this is easily understood: in the present
approach the glass phase is characterized by the typical size
of spatial cells where the particles remain localized. This
volume is small in the low-temperature limit and grows with
increasing temperature. At the transition to the liquid, the
localization length is of the order of the interparticle distance
and thus remains finite. Beyond the transition the particles
move freely in the liquid phase and the localization length is
infinite. Hence the transition resembles the usual solid-liquid
transition, but with the jump in entropy �latent heat� replaced
by the entropy crisis scenario, guaranteeing the smooth tran-
sition in the free energy density.

D. Free energy and entropy densities

Finally, we analyze in some more detail the value of the
free energy and entropy densities of the liquid and glassy
phases. The free energy density F�m ,�� of the liquid derives
from the result �43� with the replica parameter m=1 �we
assume that ��1 and choose L�R�,

Fliquid��� � −
D

2�
ln�R2� −

r0

2R�
e�; �67�

the entropy density is given by the derivative

Sliquid��� = �2��Fliquid � D ln R −
r0

2R
�� − 1�e�. �68�

We observe that at sufficiently low temperatures the entropy
density of the liquid would become negative. Formally, this

takes place at ���c with �c defined by the condition

��c − 1�e�c =
DR

r0
ln�R2� . �69�

This negative entropy then signals the presence of the glass
�or entropy crisis� transition: with r0 /R�1 we obtain an es-
timate for the transition temperature,

�c � ln
DR

r0
, �70�

which is in agreement with the analytic result �53�.
The above arguments do not imply that the entropy of the

liquid at the phase transition is equal to zero. In fact, as we
shall see below, the phase transition into the glassy phase
takes place before the entropy becomes zero. The above con-
sideration of the liquid entropy is merely a qualitative esti-
mate of the temperature below which we would run into
trouble if we were to use the result �67�.

Turning to the frozen state, we first discuss the situation
deep in the glassy phase. The free energy density at ���c
follows from the result �47� with m=m*��� defined by Eq.
�52�. Assuming L�R we find the simplified expression

Fglass � −
D

2
�2 + �1 −

1

�
� ln ln�DR/r0�

ln�DR/r0�
+

1

�
ln

r0
2

�
� .

�71�

Taking the derivative with respect to temperature we obtain
the entropy density of the glassy phase,

Sglass��� = �2��Fglass �
D

2
�1 + ln

r0
2

�
−

ln ln�DR/r0�
ln�DR/r0� � .

�72�

Combining the results for the free energy and the entropy, we
can derive an expression for the average energy per particle
in the glassy phase which scales with the dimension D,

E = Fglass + TSglass � − AD; �73�

the prefactor A assumes a value close to unity,

A � 1 +
ln ln�DR/r0�
2 ln�DR/r0�

� 1. �74�

We thus find that our glass phase is “well packed” with
slightly more than D particles in a �interacting� nearest
neighbor position on average. Note that the entropy �72� be-
comes negative at sufficiently low temperatures, i.e., when
��r0

2�1. This unphysical result is a consequence of the
breakdown of our continuum approximation at these low
temperatures �cf. Eq. �45��.

Next, we analyze the situation near the glass transition
temperature. A general expression for the entropy of the
glassy phase �without assuming that T�Tc� can be obtained
from Eq. �47�,
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Sglass��� � −
D

2
ln

�

DRr0
−

D

2
�m*���

� D ln R −
r0

2R
��m*��� − 1�e�m*���

−
D�m*���

2
�1 − m*� +

D

2
ln m*��� , �75�

where we have used the relation �48� in order to allow for a
simple comparison with the result �68� of the liquid. At Tc
we have m*=1 and the entropy of the glass coincides with
that of the liquid,

Sglass��c� = Sliquid��c� = D ln R −
r0

2R
��c − 1�e�c. �76�

Inserting the estimate for �c, Eq. �53�, we find that the en-
tropy is positive at the transition point,

Sglass��c� = Sliquid��c� � D ln R −
D

2
ln

R

r0
� 0. �77�

Another remark concerns the low-density or gas limit of
our model away from the densely packed limit with L�R
considered above. The system then does not exhibit any sig-
nature of the above phase transition. Formally, we find no
maximum in the replica free energy density �43�; rather,
F�m ,�� diverges for m→0. However, in this limit the con-
straint �46� is violated and our calculation is not valid any
more. In fact, the constraint �46� guarantees the smallness of
the thermal displacement amplitude �u2�
r0

2; its violation
tells us that our basic assumption of a molecular liquid phase
is corrupted, which signals that the original system is in the
liquid state.

E. Conclusion

In conclusion, we have derived analytic results for the
liquid-glass phase transition in a model glass former, using
the replica mean-field theory proposed by Mézard and Parisi
�10� based on the entropy crisis scenario. In previous work
on the soft-sphere model �10� and on the Lennard-Jones bi-
nary mixture �14� use has been made of combined analytical
and numerical techniques: a first integration over the dis-
placement variables ui

a using a harmonic expansion �10�
leads to a partition function which can be expressed through
the free energy and pair correlation function of the liquid
phase. These objects then can be determined within liquid
state theory making use of specific closure relations in the
solution of the nonlinear integral equations for the correlator,
the hypernetted chain �HNC� equation in the case of the soft-
sphere model �10� and a mixed scheme combining the HNC
and mean spherical approximation for the Lennard-Jones bi-
nary mixture �14�. With this input, thermodynamic quantities
such as the configurational entropy and the glass transition

temperature can be evaluated numerically. In our work above
we have pursued an alternative strategy: rather than concen-
trating on a generic model liquid with a given potential �soft
spheres with U�r��r−12 or Lennard-Jones type� and using
input from liquid state theory, we have identified a suffi-
ciently simple model potential in the form of an attractive
shell, which allows one to carry out all calculations analyti-
cally, provided that the parameters for the potential are cho-
sen appropriately. Of course, the present study does not pre-
tend to describe the physics in actual realistic glasses, which
probably is much more complicated and furthermore essen-
tially nonequilibrium in nature. Nevertheless, our analysis
demonstrates that there exists a class of statistical systems
which, on the one hand, incorporate essential features of
structural glasses and, on the other hand, can be studied
within an equilibrium statistical mechanics approach, similar
to numerous other disordered systems. Although the present
calculation was limited to a mean-field approximation, we
have obtained a physically consistent set of results: Our rep-
licated system indeed exhibits a free energy F�m ,T� with a
maximum m*�T� within the interval �0, 1� at low tempera-
tures. This maximum shifts toward unity with increasing T
and the condition m*�Tc�=1 defines a glass temperature Tc

�1/ ln�DR /r0� which is in agreement with various estimates.
The maximum disappears upon diluting the system, indicat-
ing the persistence of the liquid state for low densities �
�R−D. The behavior of the configurational entropy S�f ,T� is
fully consistent with the freezing scenario based on an en-
tropy crisis and we recover the expected characteristics of a
smooth transition in the free energy combined with a jump in
the order parameter. In addition, our analysis provides struc-
tural information on the glass state: calculating the mean
particle energy from the free energy and entropy expressions,
we find that the system freezes into a glass state with par-
ticles binding to slightly more than D neighbors. All these
results have been derived in analytic form, providing direct
access to the parametric dependence of the physical results.

On the other hand, we have to admit that at the present
stage it is difficult to judge which of the features of the phase
transition scenario found here are specific to the particular
model and its mean-field solution and which of them are
generic and reflect the general situation encountered in the
structural glass transition. At least part of this proviso can be
handled by pushing the analysis beyond the mean-field ap-
proximation. With the experience gained in the present study,
we believe that the theoretical construction of this next step,
which would include the effect of thermodynamic fluctua-
tions, does not look unrealistic.
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